翻訳と辞書
Words near each other
・ Euclidean algorithm
・ Euclidean distance
・ Euclidean distance matrix
・ Euclidean division
・ Euclidean domain
・ Euclidean field
・ Euclidean geometry
・ Euclidean group
・ Euclidean minimum spanning tree
・ Euclidean plane isometry
・ Euclidean quantum gravity
・ Euclidean random matrix
・ Euclidean relation
・ Euclidean rhythm
・ Euclidean shortest path
Euclidean space
・ Euclidean tilings by convex regular polygons
・ Euclidean topology
・ Euclidean vector
・ Euclideon
・ Euclides (crater)
・ Euclides da Cunha
・ Euclides da Cunha (disambiguation)
・ Euclides da Cunha Paulista
・ Euclides da Cunha, Bahia
・ Euclides Danicus
・ Euclides Kourtidis
・ Euclides Pereira
・ Euclides Rojas
・ Euclides Varela


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Euclidean space : ウィキペディア英語版
Euclidean space

In geometry, Euclidean space encompasses the two-dimensional Euclidean plane, the three-dimensional space of Euclidean geometry, and certain other spaces. It is named after the Ancient Greek mathematician Euclid of Alexandria. The term "Euclidean" distinguishes these spaces from other types of spaces considered in modern geometry. Euclidean spaces also generalize to higher dimensions.
Classical Greek geometry defined the Euclidean plane and Euclidean three-dimensional space using certain postulates, while the other properties of these spaces were deduced as theorems. Geometric constructions are also used to define rational numbers. When algebra and mathematical analysis became developed enough, this relation reversed and now it is more common to define Euclidean space using Cartesian coordinates and the ideas of analytic geometry. It means that points of the space are specified with collections of real numbers, and geometric shapes are defined as equations and inequalities. This approach brings the tools of algebra and calculus to bear on questions of geometry and has the advantage that it generalizes easily to Euclidean spaces of more than three dimensions.
From the modern viewpoint, there is essentially only one Euclidean space of each dimension. With Cartesian coordinates it is modelled by the real coordinate space () of the same dimension. In one dimension, this is the real line; in two dimensions, it is the Cartesian plane; and in higher dimensions it is a coordinate space with three or more real number coordinates. Mathematicians denote the Euclidean space by if they wish to emphasize its Euclidean nature, but is used as well since the latter is assumed to have the standard Euclidean structure, and these two structures are not always distinguished. Euclidean spaces have finite dimension.
==Intuitive overview==
One way to think of the Euclidean plane is as a set of points satisfying certain relationships, expressible in terms of distance and angle. For example, there are two fundamental operations (referred to as motions) on the plane. One is translation, which means a shifting of the plane so that every point is shifted in the same direction and by the same distance. The other is rotation about a fixed point in the plane, in which every point in the plane turns about that fixed point through the same angle. One of the basic tenets of Euclidean geometry is that two figures (usually considered as subsets) of the plane should be considered equivalent (congruent) if one can be transformed into the other by some sequence of translations, rotations and reflections (see below).
In order to make all of this mathematically , the theory must clearly define the notions of distance, angle, translation, and rotation for a mathematically described space. Even when used in physical theories, Euclidean space is an abstraction detached from actual physical locations, specific reference frames, measurement instruments, and so on. A purely mathematical definition of Euclidean space also ignores questions of units of length and other physical dimensions: the distance in a "mathematical" space is a number, not something expressed in inches or metres. The standard way to define such space, as carried out in the remainder of this article, is to define the Euclidean plane as a two-dimensional real vector space equipped with an inner product.〔 The reason for working with arbitrary vector spaces instead of is that it is often preferable to work in a ''coordinate-free'' manner (that is, without choosing a preferred basis). For then:
*the vectors in the vector space correspond to the points of the Euclidean plane,
*the addition operation in the vector space corresponds to translation, and
*the inner product implies notions of angle and distance, which can be used to define rotation.
Once the Euclidean plane has been described in this language, it is actually a simple matter to extend its concept to arbitrary dimensions. For the most part, the vocabulary, formulae, and calculations are not made any more difficult by the presence of more dimensions. (However, rotations are more subtle in high dimensions, and visualizing high-dimensional spaces remains difficult, even for experienced mathematicians.)
A Euclidean space is not technically a vector space but rather an affine space, on which a vector space acts by translations, or, conversely, a Euclidean vector is the difference (displacement) in an ordered pair of points, not a single point. Intuitively, the distinction says merely that there is no canonical choice of where the origin should go in the space, because it can be translated anywhere. When a certain point is chosen, it can be declared the origin and subsequent calculations may ignore the difference between a point and its coordinate vector, as said above. See point–vector distinction for details.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Euclidean space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.